Note: - Attempt any 5 question. All questions carry equal marks.

Q.									
NO.	Questions								
1. \quadConstruct a Huffman coding tree for the following message and also its calculate code efficiency.									
Message M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 Probability 0.2 0.18 0.12 0.1 0.1 0.08 0.06 0.06 0.06 0.4									

Apply the Shannon-fano coding procedure for the following message ensemble and determine the average length and efficiency of the code system
2.

Message	M1	M2	M3	M4	M5
Probability	0.3	0.1	0.4	0.08	0.12

. The channel matrix is given by
$P(X, Y)=$

$$
\left[\begin{array}{ll}
2 / 3 & 1 / 3 \\
1 / 10 & 9 / 10
\end{array}\right]
$$

Determine $\mathrm{H}(\mathrm{X}), \mathrm{H}(\mathrm{X} / \mathrm{Y}), \mathrm{H}(\mathrm{Y} / \mathrm{X})$ and mutual information $\mathrm{I}(\mathrm{X} ; \mathrm{Y})$.
Find the mutual information and channel capacity of the channel shown in figure below Given : $p\left(x_{1}\right)=0.6, p\left(x_{2}\right)=0.4$. Calcuate $H(X), H(Y), H(Y / X)$ and $I(X ; Y)$
4.

A channel has a BW of 5 KHz and a signal to noise power is 63 . Determine the BW needed if the S / N power ratio is reduced to 31 . What will be the signal power required if the channel bandwidth is reduced to 3 KHz ?

State and Prove Shannon Hartley theorem.
[8] Apply CO2
[8] Remember CO 2

Shri Shankaracharya Institute of Professional Management \& Technology Department of Electronics and Telecommunication Engineering

Class Test - I Session- Jan - June, 2022 Month- April
Sem- ET\&T 6 ${ }^{\text {th }}$ Subject - AI and Machine Learning - C000630(028)
Time Allowed: 2 hrs Max Marks: 40
Note: - All the questions are compulsory. All questions carry equal marks.

Q. NO.	Questions	Marks Levels of Bloom's taxonomy	COs	
1.	Explain the following terms with example: 1. Mean 2. Median 3. Mode 4. Central Limit Theorem	$[10]$	Understanding	CO5
2.	Define Machine Learning. Also explain what is training dataset and test dataset in machine learning model and in what ratio the training and test datasets are divided.	$[10]$	Understanding	CO5
3.	What are the different types of machine learning algorithm. Explain each of them in detail.	$[10]$	Understanding	CO5

Design a linear regression model to predict the revenue of a hotel. The dataset is stored in a file Hotel.csv. The dataset is shown below:
4.

Revenue	PercentOccupancy
514.44	65.7
463.12	61.1
598.18	78.2
454.92	65.4
453.8	63.5
502.23	70.6
626.26	81.2
498.7	72
514.46	72.9
623.29	81.7
454.77	62.1
385.57	53.4

[10] Apply CO5

Note: - Attempt any 5 question. All questions carry equal marks.

Q.	
NO.	

1.

For the given sequence $x(n)=2^{n}$ and $N=8$, find $X(K)$ using DIT
FFT algorithm
2. Compute linear and circular convolution of the two sequences $x_{1}(n)$

Marks	Levels of
Bloom's	
taxonomy	\quad COs

$=\{1,1,2,2\}$ and $x_{2}(n)=\{1,2,3,4\}$
3. Explain DFT and DTFT. calculate DFT for the input signal

Apply
CO1
$x(n)=\{0,1,2,3\}$.
4. Find the response of FIR filter with impulse response $h(n)=\{1,2,4\}$
$\begin{array}{l:l:l}{[8]} & \text { Apply }\end{array}$

Apply
COI
5. Determine IDFT of $X(K)=\{3,(2+\mathrm{j}), 1,(2-\mathrm{j})\}$
[8] Apply CO
6. Explain Porpurties of DFT.
[8] Understading CO2
(a) Find the DTFT of the following finite duration sequence of
7. length $\mathrm{L} x(n)=\left\{\begin{array}{cc}A, & \text { for } 0 \leq n \leq L-1 \\ 0, & \text { otherwise }\end{array}\right.$
[8] Apply CO 2
(b) Also, find the inverse DTFT to verify $x(n)$ for $L=3$ and $A=1 V$.

Shri Shankaracharya Institute of Professional Management \& Technology Department of Electronics and Telecommunication Engineering
 Class Test-I Session- Jan. - June, 2022 Month- February
 Sem- ET\&T 6 ${ }^{\text {th }}$ Subject- Digital Signal Processing - C028613(028)
 Time Allowed: 2 hrs Max Marks: 40

SSIPMT
RAIPUR

Note:- Attempt any 5 question. All questions carry equal marks.

$\begin{gathered} \text { Q. } \\ \text { NO. } \end{gathered}$	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	For the given sequence $\mathrm{x}(\mathrm{n})=2^{\mathrm{n}}$ and $\mathrm{N}=8$, find $\mathrm{X}(\mathrm{K})$ using DIT FFT algorithm	[8]	Apply	CO1
2.	Compute linear and circular convolution of the two sequences $x_{1}(n)$ $=\{1,1,2,2\}$ and $x_{2}(n)=\{1,2,3,4\}$	[8]	Apply	COI
3.	Explain DFT and DTFT. calculate DFT for the input signal $x(n)=$ $\{0,1,2,3\}$.	[8]	Apply	CO1
4.	Find the response of FIR filter with impulse response $h(n)=\{1,2,4\}$ to the input sequence $\mathrm{x}(\mathrm{n})=\{1,2\}$ using periodic convolution.	[8]	Apply	CO1
5.	Determine IDFT of $\mathrm{X}(\mathrm{K})=\{3,(2+\mathrm{j}), 1,(2-\mathrm{j})\}$	[8]	Apply	COl
6.	Explain Porpurties of DFT.	[8]	Understading	CO 2
7.	(a) Find the DTFT of the following finite duration sequence of length $\mathrm{L} x(n)=\left\{\begin{array}{cc}A, & \text { for } 0 \leq n \leq L-1 \\ 0, & \text { otherwise }\end{array}\right.$, (b) Also, find the inverse DTFT to verify $\mathrm{x}(\mathrm{n})$ for $\mathrm{L}=3$ and $\mathrm{A}=1 \mathrm{~V}$.	[8]	Apply	CO 2

Shri Shankaracharya Institute of Professional Management \& Technology
Department of Electronics \& Telecommunication Class Test - I Session- Jan june 2022 Month- April
Sem- ET\&T $6^{\text {th }}$ Subject- Antennas \& Wave Propagation Code- C028612(28)
Time Allowed: 2 hrs Max Marks: 40
Note: - Attempt any 5 question. All questions carry equal marks.

Q.NO.	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	Define Waveguides? Explain Different types of Waveguide.	[8]	Understanding	C01
2.	What are the Modes of Propagation in Waveguide?	[8]	Understanding	C01
3.	Derive the Wave Equation for Two Parallel Plate Waveguides.	[8]	Apply	C01
4.	Explain Ground wave, Sky wave \& Space wave Communication.	[8]	Understanding	CO2
5.	What are the Limitation of Transmission line? How it overcome by waveguide	[8]	Understanding Apply	C01

Note: - Attempt any 5 question. All questions carry equal marks.

Q.NO.	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	Define Waveguides? Explain Different types of Waveguide.	[8]	Understanding	C01
2.	What are the Modes of Propagation in Waveguide?	[8]	Understanding	C01
3.	Derive the Wave Equation for Two Parallel Plate Waveguides.	[8]	Apply	C01
4.	Explain Ground wave, Sky wave \& Space wave Communication.	[8]	Understanding	CO2
5.	What are the Limitation of Transmission line? How it overcome by waveguide	[8]	Understanding Apply	C01

Shri Shankaracharya Institute of Professional Management \& Technology Department of Electronics and Telecommunication Engineering Class Test - I , Month- April 2022
 Sem- ET\&T 6th Subject- VLSI Design-C028611(028)
 Time Allowed: 2 hrs Max Marks: 40

NOTE: (1) Attempt any Five Questions.
(2) Attempt question in serial order.

