Shri Shankaracharya Institute of Professional Management & Technology Department of Electronics and Telecommuncation

Class Test – I Session- Jan.– June 2022 Month- April

Sem- ET 6th Subject- Information Theory and Coding C028631(28)

Time Allowed: 2 hrs Max Marks: 40

Note: - Attempt any 5 question. All questions carry equal marks.

Q. NO.	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	Construct a Huffman coding tree for the following message and also its calculate codeefficiency.MessageM1M2M3M4M5M6M7M8M9M10Probability0.20.180.120.10.10.080.060.060.04	[8]	Apply	C01
2.	Apply the Shannon-fano coding procedure for the following message ensemble and determine the average length and efficiency of the code systemMessageM1M2M3M4M5Probability0.30.10.40.080.12	[8]	Apply	C01
3.	. The channel matrix is given by $P(X,Y) = \begin{bmatrix} 2/3 & 1/3 \\ 1/10 & 9/10 \end{bmatrix}$ Determine H(X), H(X/Y), H(Y/X) and mutual information I(X;Y).	[8]	Apply	COI
4.	Find the mutual information and channel capacity of the channel shown in figure below Given : $p(x_1)=0.6$, $p(x_2)=0.4$. Calcuate H(X), H(Y), H(Y/X) and I(X;Y) $ \begin{array}{c} x_1 & 0.8 \\ & & & \\$	[8]	Apply	CO2
5.	A channel has a BW of 5KHz and a signal to noise power is 63. Determine the BW needed if the S/N power ratio is reduced to 31. What will be the signal power required if the channel bandwidth is reduced to 3KHz?	[8]	Apply	CO2
6.	State and Prove Shannon Hartley theorem.	[8]	Remember	CO2

Shri Shankaracharya Institute of Professional Management & Technology Department of Electronics and Telecommunication Engineering Class Test – I Session- Jan – June, 2022 Month- April

Sem- ET&T 6th Subject – AI and Machine Learning - C000630(028)

Time Allowed: 2 hrs Max Marks: 40

Note: - All the questions are compulsory. All questions carry equal marks.

Q. NO.	Questions		Questions Marks Bloom's taxonomy			
1.	 Explain the following terms with example: Mean Median Mode Central Limit Theorem 				Understanding	CO5
2.	Define Machi and test datas training and t	ine Learning. Also ex et in machine learning est datasets are divide	plain what is training dataset g model and in what ratio the d.	[10]	Understanding	CO5
3.	What are the Explain each	different types of mac of them in detail.	chine learning algorithm.	[10]	Understanding	CO5
4.	Design a line hotel. The da shown below Revenue 514.44 463.12 598.18 454.92 453.8 502.23 626.26 498.7 514.46 623.29 454.77 385.57	ar regression model to taset is stored in a file ?: PercentOccupancy 65.7 61.1 78.2 65.4 63.5 70.6 81.2 72 72.9 81.7 62.1 53.4	o predict the revenue of a Hotel.csv. The dataset is	[10]	Apply	CO5

Shri Shankaracharya Institute of Professional Management & Technology Department of Electronics and Telecommunication Engineering Class Test – I Session- Jan. – June, 2022 Month- February Sem- ET&T 6th Subject- Digital Signal Processing - C028613(028)

Time Allowed: 2 hrs Max Marks: 40

Note: - Attempt any 5 question. All questions carry equal marks.

SSIPMT

RAIPUR

SSIPMT

RAIPUR

Q. NO.	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	For the given sequence $x(n) = 2^n$ and $N = 8$, find $X(K)$ using DIT FFT algorithm	[8]	Apply	CO1
2.	Compute linear and circular convolution of the two sequences $x_1(n) = \{1,1,2,2\}$ and $x_2(n) = \{1,2,3,4\}$	[8]	Apply	CO1
3.	Explain DFT and DTFT. calculate DFT for the input signal $x(n) = \{0,1,2,3\}.$	[8]	Apply	CO1
4.	Find the response of FIR filter with impulse response $h(n) = \{1,2,4\}$ to the input sequence $x(n) = \{1,2\}$ using periodic convolution.	[8]	Apply	COl
5.	Determine IDFT of $X(K) = \{3, (2+j), 1, (2-j)\}$	[8]	Apply	COI
6.	Explain Porpurties of DFT.	[8]	Understading	CO2
7.	(a) Find the DTFT of the following finite duration sequence of length L $x(n) = \begin{cases} A, & for \ 0 \le n \le L-1 \\ 0, & otherwise \end{cases}$ (b) Also, find the inverse DTFT to verify $x(n)$ for L=3 and A=1V.	[8]	Apply	CO2

Shri Shankaracharya Institute of Professional Management & Technology Department of Electronics and Telecommunication Engineering Class Test – I Session- Jan. – June, 2022 Month- February Sem- ET&T 6th Subject- Digital Signal Processing - C028613(028) Time Allowed: 2 hrs Max Marks: 40

Note: - Attempt any 5 question. All questions carry equal marks.

Q. NO.	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	For the given sequence $x(n) = 2^n$ and $N = 8$, find X(K) using DIT FFT algorithm	[8]	Apply	CO1
2.	Compute linear and circular convolution of the two sequences $x_1(n) = \{1,1,2,2\}$ and $x_2(n) = \{1,2,3,4\}$	[8]	Apply	CO1
3.	Explain DFT and DTFT. calculate DFT for the input signal $x(n) = \{0,1,2,3\}$.	[8]	Apply	CO1
4.	Find the response of FIR filter with impulse response $h(n) = \{1,2,4\}$ to the input sequence $x(n) = \{1,2\}$ using periodic convolution.	[8]	Apply	CO1
5.	Determine IDFT of $X(K) = \{3, (2+j), 1, (2-j)\}$	[8]	Apply	CO1
6.	Explain Porpurties of DFT.	[8]	Understading	CO2
7.	(a) Find the DTFT of the following finite duration sequence of length L $x(n) = \begin{cases} A, & for \ 0 \le n \le L-1 \\ 0, & otherwise \end{cases}$ (b) Also, find the inverse DTFT to verify x(n) for L=3 and A=1V.	[8]	Apply	CO2

Shri Shankaracharya Institute of Professional Management & TechnologyDepartment of Electronics & TelecommunicationClass Test – ISession- Jan june 2022Month- AprilSem- ET&T 6th Subject- Antennas & Wave PropagationCode- C028612(28)

Time Allowed: 2 hrs Max Marks: 40

Note: - Attempt any 5 question. All questions carry equal marks.

Q.NO.	Questions		Levels of Bloom's taxonomy	COs
1.	Define Waveguides? Explain Different types of Waveguide.	[8]	Understanding	C01
2.	What are the Modes of Propagation in Waveguide?	[8]	Understanding	C01
3.	Derive the Wave Equation for Two Parallel Plate Waveguides.	[8]	Apply	C01
4.	Explain Ground wave, Sky wave & Space wave Communication.	[8]	Understanding	CO2
5.	What are the Limitation of Transmission line? How it overcome by waveguide	[8]	Understanding Apply	C01

SSIPHT SSIPHT SALVUR SSIPHT SSIPHT SALVUR SSIPHT SALVUR SSIPHT SSIPHT

Note: - Attempt any 5 question. All questions carry equal marks.

Q.NO.	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	Define Waveguides? Explain Different types of Waveguide.	[8]	Understanding	C01
2.	What are the Modes of Propagation in Waveguide?	[8]	Understanding	C01
3.	Derive the Wave Equation for Two Parallel Plate Waveguides.	[8]	Apply	C01
4.	Explain Ground wave, Sky wave & Space wave Communication.	[8]	Understanding	C02
5.	What are the Limitation of Transmission line? How it overcome by waveguide	[8]	Understanding Apply	C01

Shri Shankaracharya Institute of Professional Management & Technology Department of Electronics and Telecommunication Engineering Class Test – I, Month-April 2022 Sem- ET&T 6th Subject- VLSI Design-C028611(028) Time Allowed: 2 hrs Max Marks: 40

NOTE : (1) Attempt any Five Questions. (2) Attempt question in serial order.

Q. NO.	Questions *	Marks	Levels of Bloom's taxonomy	COs
1.	Explain Types of Programming.	[8]	Understanding	
2.	Write a program for (16X1) Multiplexer	[8]	Apply	
3.	Write a program for BCD adder.	[8]	Apply	
4.	Write a program for 4-bit Full adder	[8]	Apply	
5.	Write a program representing different types of programming style.	[8]	Apply	
€ .	Explain the use of HDL in Embedded system design.	[8]	Understanding	

Shri Shankaracharya Institute of Professional Management & Technology Department of Electronics and Telecommunication Engineering Class Test – I, Month-April 2022 Sem- ET&T 6th Subject- VLSI Design-C028611(028) Time Allowed: 2 hrs Max Marks: 40

NOTE : (1) Attempt any Five Questions. (2) Attempt question in serial order.

SSIPMT

RAIPUR

Q. NO	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	Explain Types of Programming.	[8]	Understanding	
2.	Write a program for (16X1) Multiplexer	[8]	Apply	
3.	Write a program for BCD adder.	[8]	Apply	
4.	Write a program for 4-bit Full adder	[8]	Apply	
5.	Write a program representing different types of programming style.	[8]	Apply	
6.	Explain the use of HDL in Embedded system design.	[8]	Understanding	